
Debugging Support

The WINDBG.EXE debugger can be used for source-level debugging of Windows
NT kernel-mode drivers. You can use this debugger in one of two ways:

• To interactively debug a live Windows NT system

• To perform analysis of a previously obtained crash dump (also known as post-
mortem analysis)

Unfortunately, WINDBG has more than a few reliability problems (unexplained
application crashes) and also behaves in an eccentric fashion occasionally.
However, more often than not, WINDBG will work reasonably well and should be
a valuable tool in helping you debug your kernel-mode code.

Interactive Debugging of a Live System
You will need two machines, each running Windows NT, in order to use
WINDBG to debug a live system.* The machine that executes the driver(s) to be
debugged is called the target machine. The machine on which WINDBG will
execute is called the host machine. The two machines communicate using a null-
modem serial cable which you will need to purchase. One end of this null-
modem serial cable must be connected to the serial (COM) ports on each of the
two systems (the host and target). If the machines that you use have multiple
available COM ports, you can choose any one that you prefer; by default on x86
systems, WINDBG expects to use COM2 but this default can easily be overridden
using an appropriate option (/DEBUGPORT=PortWame) on the target machine
boot command line.t

* It is possible to do things such as debugging an Alpha target using an x86 machine as the host (or vice
versa). However, I have tried to avoid this whenever possible.
t You need not use the same COM port on both the host and target machines.

741



742_________________________________Appendix D: Debugging Support

Use the sequence of steps given below to quickly get started with debugging your
file system or filter driver:

1. Install either a checked or a free version of the Windows NT operating system
on the target machine.

If you install a checked build, the target machine will execute a lot slower
than it will with a free build. However, you may benefit from the assertions
and/or any debug print statements that the operating system contains.

TIP If you have sufficient space available on the boot partition of the tar-
get system, you could install both the free and the checked builds
in separate boot directories and thereby retain the flexibility to boot
using either type of operating system build.

2. Install a free version of the Windows NT operating system on the host
machine.

You should note that the version of the operating system on both the target
and host systems do not need to be the same. However, you will require the
particular version of WINDBG executing on the host supplied with the SDK
associated with the version of the operating system executing on the target.
Therefore, if you wish to debug a target machine executing Version 3-51 of
the Windows NT operating system, you must use the WINDBG application
that was supplied with the SDK for Version 3.51 of Windows NT. If, however,
you wish to debug a target machine executing Version 4.0 of the operating
system, you cannot use the same WINDBG application that you use to debug
Version 3.51; you must use the debugger supplied with the SDK for Version
4.0 of the operating system instead.

3. Install the appropriate SDKs on the host system.

If you intend to debug multiple operating system releases, install each of the
appropriate SDKs on the host system. For example, you could install the SDK
for both Version 3.51 of the operating system and Version 4.0 of the oper-
ating system on a single host system running Version 4.0. This would give
you the capability of debugging drivers on both operating system releases
using the single host system.

At the time of writing this book, I worked with both the 3.51 and 4.0 versions
of the Windows NT operating system. Therefore, on most of the host systems
that I used for debugging purposes, I created a . . . \MSTOOLS-40 directory to
contain the SDK for the 4.0 version of the operating system and a



Interactive Debugging of a Live System_____________________________743

...\MSTOOLS-351 directory to contain the SDK for the 3.51 version of the
operating system.*

4. Copy the target system's debug symbol files to the host machine.

This symbolic information is required to get meaningful stack traces on the
host system. The checked and free versions of the operating system have
different symbol files associated with them. These symbol files are supplied
with the Windows NT operating system distribution CD. They can typically be
found in the \SUPPORT\DEBUG\<platform-type>\SYMBOLS directory on the
distribution CD. I would advise that you retain the subdirectory layout used
on the distribution CD when you copy the symbol files to the host system
(use the XCOPY /S source-path target-path command to achieve
this).
In order to successfully debug both types (retail/free and checked) of oper-
ating system binaries, you can create separate CHECKED and FREE
subdirectories on the host system that can contain the appropriate symbol
files. For example, you can create the following layout:

— Create the ... \DEBUG-40\CHECKED\SYMBOLtf path to contain the
debug symbol files for the checked build of the 4.0 release of the
Windows NT operating system.

— Create the . . . \DEBUG-40\FREE\SYMBOLS path to contain the debug
symbol files for the free build of the 4.0 release of the Windows NT oper-
ating system.

— Create the ... \DEBUG-351\CHECKED\SYMBOLS path to contain the
debug symbol files for the checked build of the 3.51 release of the
Windows NT operating system.

— Create the . . . \DEBUG-351\FREE\SYMBOLS path to contain the debug
symbol files for the free build of the 3.51 release of the Windows NT
operating system.

Debug symbol files change with every new service pack of the operating
system. Be aware of this fact and copy over the appropriate new debug
symbol files whenever you install a new Windows NT service pack.

5. On the target symbol, modify the [operating systems] section of the
boot.ini file* to enable debugging of the target. Add the following options to

* You can similarly install the appropriate versions of the DDK. Since I often use the host system as a
compile-link-debug machine, installing the SDK and the DDK is a requirement for me.
t You can create this subtree anywhere you like on the host system; you can specify this search path to
WINDBG using the Options—> User DLLs—>Symbol Search Path textbox.
$ This file has the hidden and system attributes set. You will need to remove the hidden and system
attributes before you modify the file and then reset them after modifications have been completed.



744_________________________________Appendix D: Debugging Support

the appropriate boot command for either or both of the free and checked
versions you may have installed:

/DEBUG
This option enables kernel-mode debugging of the target. The /NODEBUG
option disables such debugging (and any of the options given below
such as /DEBUGPORT, /BATJDRATE, etc. are ignored).

/DEBUGPORT=FortName
You can use this option to specify an alternate COM port to which you
have connected the null-modem serial cable on the target system.*

/BAUDRATE=Baud#ate
Specify the highest available baud rate at which both the target and host
systems can communicate.

There are other options such as /SOS, /MAXMEM, and /CRASHDEBUG, which
are documented in the DDK that you can also specify. These options are not
critical, however, to enabling kernel-mode debugging of the target system.
As an example of how to set up boot commands correctly on the target
system, study the contents of the boot.ini file given below. This is a file that I
have set up on one of the target x86 systems I use to debug newly developed
kernel-mode drivers:
[boot loader]
timeout=30
default=C:\

[Operating Systems]
multi(0)disk(0)rdisk(l)partition(l)\WINNT40="Windows NT Workstation
Version 4.00"
multi(0)disk(0)rdisk(l)partition(l)\WINNT351="Windows NT Workstation
Version 3.51"
multi(0)disk(0)rdisk(2)partition(2)\WINNT40.CKD="Windows NT
Workstation Version

4.0 (Checked)" /DEBUG /DEBUGPORT=COM1 /BAUDRATE=57600
multi(0)disk(0)rdisk(2)partition(2)\WINNT351.CKD="Windows NT
Workstation

Version 3.51 (Checked)" /DEBUG /DEBUGPORT=COM1 /BAUDRATE=57600
multi(0)disk(0)rdisk(2)partition(2)\WINNT40.CKD="Windows NT Workstation

Version 4.00 - Checked"
multi(0)disk(0)rdisk(2)partition(2)\WINNT351.CKD="Windows NT
Workstation

Version 3.51 - Checked"
C:\="Microsoft Windows 95"

6. Configure the WINDBG application on the host machine.

* To specify an alternate COM port for the host system, you will need to configure the WINDBG appli-
cation settings on the host system as shown in Figure D-l.



Interactive Debugging of a Live System 745

You should configure WINDBG kernel debugger options to accurately reflect
the COM port you are using on the host machine, the baud rate at which you
want the host to communicate with the target, and whether you want the
initial breakpoint (during target machine startup) to be activated or not.
Figure D-l depicts a screen shot of a configuration I've set up.

Figure D-l. Configuring the WINDBG kernel debugger options

You may also need to specify the path where you have copied symbols on
the host system. Use the User DLLs menu option (from the Options main-
menu option list) to specify the path leading to the symbol files.

TIP Once you have configured WINDBG correctly, save the program
with an appropriate name, to allow you to simply open the same
program for subsequent debugging sessions (and avoid having to re-
configure each time).

7. Copy symbolic information {your-driver-name.dbg file or the binary itself) for
your driver to the symbol file directory on the host system.

8. Ensure that you have the source files located on the host system for use in
source-level debugging sessions.

If you use your host system as the compile machine as well, then your source
files will be easily located by WINDBG. If, however, you use some other
system to compile and link your binary, ensure that source files are copied
onto the host system at the same location where they exist on the compile
machine.



746_____ ___________________________Appendix D: Debugging Support

TIP If possible, share the source directory tree on the compile machine
and access it directly from the host system (using the same drive let-
ter as the one on which they are located on the compile machine).

9. Start WINDBG on the host system and open the appropriate program (if you
had saved your configuration earlier).

10. Boot the target system using the appropriate boot command option.

The source and target systems will connect with each other and you can proceed
with debugging your kernel-mode driver. Read the documentation on using
WINDBG that is provided with the Windows NT DDK.

Analyzing a Crash Dump
Occasionally, you may need to determine the root cause of a system crash that
may have occurred on a Windows NT system that has your driver installed (and
executing), but was not connected to any debugger at the time of the crash. As
long as you have access to the crash-dump file, you have a fighting chance of
determining the cause of the crash.

NOTE The crash dump is a file that contains the saved system state—in-
cluding the contents of physical memory—for the machine that ex-
perienced a crash.

To analyze a crash dump, configure a Windows NT system exactly as you would
otherwise configure a host system for interactive debugging (except that you do
not need to physically connect the system via a serial cable to any target
machine). Invoke WINDBG as follows:

WINDBG -y path-to-symbol-flies-directory -z path-to-crash-dump-flie

Once you invoke WINDBG as shown above, you can pretty much execute the
same sequence of steps that you would otherwise execute in debugging a live
target system during interactive debugging. The DUMPCHK utility shipped with
the DDK can be useful in checking the validity of a crash dump file before you
use it with WINDBG.


